69 research outputs found

    Experimental feasibility of measuring the gravitational redshift of light using dispersion in optical fibers

    Full text link
    This paper describes a new class of experiments that use dispersion in optical fibers to convert the gravitational frequency shift of light into a measurable phase shift or time delay. Two conceptual models are explored. In the first model, long counter-propagating pulses are used in a vertical fiber optic Sagnac interferometer. The second model uses optical solitons in vertically separated fiber optic storage rings. We discuss the feasibility of using such an instrument to make a high precision measurement of the gravitational frequency shift of light.Comment: 11 pages, 12 figure

    Violation of the Equivalence Principle in the light of the SNO and SK solar neutrino results

    Get PDF
    The SNO result on charged current deuteron disintegration, the SuperKamiokande 1258-day data on electron scattering, and other solar neutrino results are used to revisit the model of neutrino oscillations driven by a violation of the equivalence principle. We use a chisq minimization technique to examine oscillation between the nu(e) and another active neutrino, both massless, and find that within the Standard Solar Model the fit to the SNO and SuperKamiokande spectra are moderately good while a very good fit is obtained when the absolute normalizations of the 8B and hep neutrino fluxes are allowed to vary. The best fit prefers large, but not maximal, mixing, essentially no hep neutrinos, and a 40% reduction in the 8B neutrino flux. The fit to the total rates from the different experiments is not encouraging but when the rates and spectra are considerd together the situation is much improved. We remark on the expectations of the VEP model for the neutral current measurements at SNO.Comment: Latex, 11 pages (incl. 1 postscript figure

    Atmospheric Neutrino Oscillations and New Physics

    Get PDF
    We study the robustness of the determination of the neutrino masses and mixing from the analysis of atmospheric and K2K data under the presence of different forms of phenomenologically allowed new physics in the nu_mu--nu_tau sector. We focus on vector and tensor-like new physics interactions which allow us to treat, in a model independent way, effects due to the violation of the equivalence principle, violations of the Lorentz invariance both CPT conserving and CPT violating, non-universal couplings to a torsion field and non-standard neutrino interactions with matter. We perform a global analysis of the full atmospheric data from SKI together with long baseline K2K data in the presence of nu_mu -> nu_tau transitions driven by neutrino masses and mixing together with sub-dominant effects due to these forms of new physics. We show that within the present degree of experimental precision, the extracted values of masses and mixing are robust under those effects and we derive the upper bounds on the possible strength of these new interactions in the nu_mu--nu_tau sector.Comment: 22 pages, LaTeX file using RevTEX4, 5 figures and 4 tables include

    Can lepton flavor violating interactions explain the LSND results?

    Full text link
    If the atmospheric and the solar neutrino problem are both explained by neutrino oscillations, and if there are only three light neutrinos, then all mass-squared differences between the neutrinos are known. In such a case, existing terrestrial neutrino oscillation experiments cannot be significantly affected by neutrino oscillations, but, in principle there could be an anomaly in the neutrino flux due to new neutrino interactions. We discuss how a non-standard muon decay ÎŒ+→e+ΜˉeΜℓ\mu^+ \to e^+ \bar\nu_e \nu_\ell would modify the neutrino production processes of these experiments. Since SU(2)LSU(2)_L violation is small for New Physics above the weak scale one can use related flavor-violating charged lepton processes to constrain these decays in a model independent way. We show that the upper bounds on Ό→3e\mu \to 3e, muonium-antimuonium conversion and τ→Όee\tau \to \mu e e rule out any observable effect for the present experiments due to ÎŒ+→e+ΜˉeΜℓ\mu^+ \to e^+ \bar\nu_e \nu_\ell for ℓ=e,ÎŒ,τ\ell=e,\mu,\tau, respectively. Applying similar arguments to flavor-changing semi-leptonic reactions we exclude the possibility that the "oscillation signals" observed at LSND are due to flavor-changing interactions that conserve total lepton number.Comment: 21 pages, 6 figures, Latex; minor correction

    Reexamining nonstandard interaction effects on supernova neutrino flavor oscillations

    Get PDF
    Several extensions of the standard electroweak model allow new four-fermion interactions (nu_a nu_b * ff) with strength eps_ab*G_F, where (a,b) are flavor indices. We revisit their effects on flavor oscillations of massive (anti)neutrinos in supernovae, in order to achieve, in the region above the protoneutron star, an analytical treatment valid for generic values of the neutrino mixing angles (omega,phi,psi)=(theta_12,theta_13,theta_23). Assuming that eps_ab<<1, we find that the leading effects on the flavor transitions occurring at high (H) and low (L) density along the supernova matter profile can be simply embedded through the replacements phi-->phi+eps_H and omega-->omega+eps_L, respectively, where eps_H and eps_L are specific linear combinations of the eps_ab's. Similar replacements hold for eventual oscillations in the Earth matter. From a phenomenological point of view, the most relevant consequence is a possible uncontrolled bias (phi-->phi+eps_H) in the value of the mixing angle phi inferred by inversion of supernova neutrino data. Such a drawback, however, does not preclude the discrimination of the neutrino mass spectrum hierarchy (direct or inverse) through supernova neutrino oscillations.Comment: Text clarified, one figure added. To appear in PR

    Measurement of the forward-backward asymmetry in Λ0b and Λ¯0b baryon production in pp¯ collisions at s√=1.96 TeV

    Get PDF
    We measure the forward-backward asymmetry in the production of Λ0b and Λ¯0b baryons as a function of rapidity in ppÂŻ collisions at s√=1.96  TeV using 10.4  fb−1 of data collected with the D0 detector at the Fermilab Tevatron collider. The asymmetry is determined by the preference of Λ0b or Λ¯0b particles to be produced in the direction of the beam protons or antiprotons, respectively. The measured asymmetry integrated over rapidity y in the range 0.1<|y|<2.0 is A=0.04±0.07(stat)±0.02(syst)

    Tracking development assistance for health and for COVID-19 : a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050

    Get PDF
    Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US,2020US, 2020 US per capita, purchasing-power parity-adjusted USpercapita,andasaproportionofgrossdomesticproduct.Weusedvariousmodelstogeneratefuturehealthspendingto2050.FindingsIn2019,healthspendinggloballyreached per capita, and as a proportion of gross domestic product. We used various models to generate future health spending to 2050. Findings In 2019, health spending globally reached 8. 8 trillion (95% uncertainty interval [UI] 8.7-8.8) or 1132(1119−1143)perperson.Spendingonhealthvariedwithinandacrossincomegroupsandgeographicalregions.Ofthistotal,1132 (1119-1143) per person. Spending on health varied within and across income groups and geographical regions. Of this total, 40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that 54.8billionindevelopmentassistanceforhealthwasdisbursedin2020.Ofthis,54.8 billion in development assistance for health was disbursed in 2020. Of this, 13.7 billion was targeted toward the COVID-19 health response. 12.3billionwasnewlycommittedand12.3 billion was newly committed and 1.4 billion was repurposed from existing health projects. 3.1billion(22.43.1 billion (22.4%) of the funds focused on country-level coordination and 2.4 billion (17.9%) was for supply chain and logistics. Only 714.4million(7.7714.4 million (7.7%) of COVID-19 development assistance for health went to Latin America, despite this region reporting 34.3% of total recorded COVID-19 deaths in low-income or middle-income countries in 2020. Spending on health is expected to rise to 1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σttÂŻ) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions

    Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at sqrt (s) = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb−1 of pp collisions at View the MathML sources=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter
    • 

    corecore